UJI ANOVA

Anova (analysis of varian) digunakan untuk menguji perbedaan mean (rata-rata) data lebih dari dua kelompok. Misalnya kita ingin mengetahui apakah ada perbedaan rata-rata lama hari dirawat antara pasien kelas VIP, I, II, dan kelas III. Anova mempunyai dua jenis yaitu analisis varian satu faktor (one way anova) dan analsis varian dua faktor (two ways anova). Pada kesempatan ini hanya akan dibahas analisis varian satu faktor.
Beberapa asumsi yang harus dipenuhi pada uji Anova adalah:
  1. Sampel berasal dari kelompok yang independen
  2. Varian antar kelompok harus homogen
  3. Data masing-masing kelompok berdistribusi normal
Asumsi pertama harus dipenuhi pada saat pengambilan sampel yang dilakukan secara random terhadap beberapa (> 2) kelompok yang independen, yang mana nilai pada satu kelompok tidak tergantung pada nilai di kelompok lain. Sedangkan pemenuhan terhadap asumsi kedua dan ketiga dapat dicek jika data telah dimasukkan ke komputer, jika asumsi ini tidak terpenuhi dapat dilakukan transformasi terhadap data. Apabila proses transformasi tidak juga dapat memenuhi asumsi ini maka uji Anova tidak valid untuk dilakukan, sehingga harus menggunakan uji non-parametrik misalnya Kruskal Wallis.
Uji Anova pada prinsipnya adalah melakukan analisis variabilitas data menjadi dua sumber variasi yaitu variasi didalam kelompok (within) dan variasi antar kelompok (between). Bila variasi within dan between sama (nilai perbandingan kedua varian mendekati angka satu), maka berarti tidak ada perbedaan efek dari intervensi yang dilakukan, dengan kata lain nilai mean yang dibandingkan tidak ada perbedaan. Sebaliknya bila variasi antar kelompok lebih besar dari variasi didalam kelompok, artinya intervensi tersebut memberikan efek yang berbeda, dengan kata lain nilai mean yang dibandingkan menunjukkan adanya perbedaan.
Rumus uji Anova adalah sebagai berikut :

DF = Numerator (pembilang) = k-1,  Denomirator (penyebut) = n-k
Dimana varian between :

Dimana rata-rata gabungannya :

Sementara varian within :

KETERANGAN :
Sb = varian between
Sw = varian within
Sn2 = varian kelompok
X = rata-rata gabungan
Xn = rata-rata kelompok
Nn = banyaknya sampel pada kelompok
k = banyaknya kelompok
Untuk penghitungan secara manual, mungkin tidak saya berikan pada kesempatan ini. Saya rasa akan lebih mudah dengan aplikasi SPSS atau STATA

Komentar

Postingan populer dari blog ini

KORELASI SEDERHANA

ANALISIS REGRESI BERGANDA

METODE NEWTON